International Journal of Engineering Sciences & Research Technology

(A Peer Reviewed Online Journal) Impact Factor: 5.164

Chief Editor Dr. J.B. Helonde **Executive Editor** Mr. Somil Mayur Shah

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

BI – IDEALS AND QUASI – IDEALS OF BCI ALGEBRA

M.Supriya and S. Jayalakshmi

*1PG and Research Department of Mathematics, Sri Parasakthi College for Women Courtallam-627802, Manonmaniam Sundaranar University, Abishekapatti-627012, Tamilnadu, India
²Associate Professor, Department of Mathematics, Sri Parasakthi College for Women, Courtallam-627802, Tamilnadu, India

DOI: 10.29121/ijesrt.v11.i1.2022.5

ABSTRACT

In this Paper, we introduce the idea of Bi – ideals and Quasi ideals in BCI algebra. Also, we discuss the relationship between a Bi – ideal and a Quasi ideal and distinguish some properties of Bi – ideals and Quasi ideals in BCI algebra.

KEYWORDS: BCI algebra, ideal, Bi - ideal, Quasi ideal.

1. INTRODUCTION

The notion of BCI (BCK) – algebras was first initiated by Imai and Iseki in 1966 as a generalization of the concept of set – theoretic difference and prepositional calculus. It turns out that Abelian groups are a special case of BCI algebras. Y.B.Jun [1] deal with various results on ideals of BCK algebras. The impression of Bi – ideal for semi groups was interrupted by Good and Hughes.[4] Subsequently, the conception of Bi – ideals in associative rings were suggested by Lajos and Szasz.[5] T.Tamizh Chelvam et al. [2] innovated certain concepts on Bi – ideals of near rings. An interesting special case of Bi – ideals is given by the Quasi ideal of O. Steinfeld [6] in some characterizations of groups and division ring. I. Yakabe [3] constituted several properties on Quasi ideals in near rings.

This concept motivates to construct Bi-ideals and Quasi ideals in BCI algebra and discuss some basic results, examples and properties.

2. PRELIMINARIES

We recall several basic definitions which are needed for the evolution of this paper.

DEFINITION 2.1:

An algebra (X,*, 0) of type (2, 0) is called a BCI algebra if the following conditions are satisfied:

- i. ((x * y) * (x * z)) * (z * y) = 0
- ii. (x * (x * y)) * y = 0
- iii. x * x = 0
- iv. x * y = 0 and y * x = 0 imply x = y, $\forall x, y, z \in X$.

htytp: // <u>www.ijesrt.com</u>© *International Journal of Engineering Sciences & Research Technology*[40]

Let $X = \{0, a, b, c\}$ be a BCI algebra with the following cayley table:

*	0	а	b	с
0	0	а	b	с
a	а	0	с	b
b	b	с	0	а
с	с	b	а	0

(i.e) (X, *, 0) is a BCI algebra.

DEFINITION 2.3:

- Let A and B be two non-empty subsets of X. We define two types of products:
- i. $AB = \{ab/a \in A, b \in B\}$
- ii. $A * B = \{a (a' + b) aa' / a \in A, b \in B\}$

DEFINITION 2.4:

A non-empty subset S of a BCI algebra X is called a BCI subalgebra if $x * y \in S, \forall x, y \in S$.

DEFINITION 2.5:

A subset A of a BCI algebra X is called a BCI-ideal if it satisfies the following axioms:

- i. $0 \in A$
- ii. $y * x \in A$ and $x \in A$ imply $y \in A$ (resp. $x * y \in A$), $\forall x, y \in X$.

DEFINITION 2.6:

A BCI algebra X is called Zero symmetric, if x.0 = 0, $\forall x \in X$.

DEFINITION 2.7:

A BCI algebra X is said to be regular if every element of X is regular. (i.e.) for every $a \in X$, there exists $b \in X$ such that a = aba.

DEFINITION 2.8:

A subgroup M of a BCI algebra X is said to be a BCI sub algebra if $MM \subseteq M$.

DEFINITION 2.9:

A subgroup M of a BCI algebra X is called a left (right) X- BCI subalgebra of X if $XM \subseteq M$ (MX \subseteq

M).

htytp: // <u>www.ijesrt.com</u>© *International Journal of Engineering Sciences & Research Technology* [41]

[Lakshmi *et al.*, 11(1): January, 2022] ICTM Value: 3.00 DEFINITION 2.10:

An element a of a BCI algebra X is said to be idempotent if $a^2 = a$.

DEFINITION 2.11:

A BCI algebra X is called idempotent if $X = X^2$.

DEFINITION 2.12:

Let A be a set. $\mathcal{M} \subseteq \mathcal{P}(A)$ (Where $\mathcal{P}(A)$ denote the power set of A) is said to be a Moore-system on A \Leftrightarrow

i. $A \subseteq M$.

ii. For any set I, $(\forall i \in I: M_i \in M) \Rightarrow \bigcap_{i \in I} M_i \in M$.

3. BI – IDEALS ON BCI ALGEBRA

DEFINITION 3.1:

A subalgebra B of a BCI algebra X is called a **Bi** – **ideal** of X if $BXB \cap (BX)^*B \subseteq B$. In case of zero symmetric, $BXB \subseteq B$.

EXAMPLE 3.2:

Let $X = \{0, 1, a, b, c\}$ be a BCI algebra with the following cayley table:

*	0	1	а	b	с
0	0	0	а	b	с
1	1	0	а	b	с
а	а	а	0	с	b
b	b	b	С	0	а
с	с	с	b	а	0

Clearly, $B = \{0, a\}$ is a Bi – ideal of a BCI algebra X.

htytp: // <u>www.ijesrt.com</u>© *International Journal of Engineering Sciences & Research Technology* [42]

3.1 MAIN RESULTS ON BI – IDEALS

Proposition: 3.1.1

The set of all bi – ideals of a BCI algebra X forms a Moore system on X.

Proof:

Let B_i { $i \in I$ } be a set of Bi – ideals of X. Let B = $\bigcap_{i \in I}^{\cap} B_i$. Then BXB \cap (BX) * B \subseteq B_iXB_i \cap (B_iX) * B_i \subseteq B_i, for every $i \in I$. \Rightarrow BXB \cap (BX) * B \subseteq B. Therefore, B is a Bi – ideal of X.

Proposition: 3.1.2

If B is a Bi – ideal of a BCI algebra X and S is a BCI sub algebra of X, then $B \cap S$ is a Bi – ideal of S.

Proof:

Since B is a Bi – ideal of X, BXB \cap (BX) * B \subseteq B. Let L = B \cap S. Then LSL \cap (LS) * L = (B \cap S) S (B \cap S) \cap ((B \cap S)S) * (B \cap S) \subseteq BSB \cap S \cap (BS) * B \subseteq B \cap S = L. Therefore, L is a Bi – ideal of S.

Proposition: 3.1.3

Let X be a zero symmetric BCI algebra. A subalgebra B of X is a Bi – ideal if and only if $BXB \subseteq B$.

Proof:

For a subalgebra B of X, if $BXB \subseteq B$, then B is a Bi – ideal of X. Conversely, Assume B is a Bi – ideal of X. We have $BXB \cap (BX) * B \subseteq B$. Since X is zero symmetric, $XB \subseteq X * B$, we get $BXB = BXB \cap BXB \subseteq BXB \cap (BX) * B \subseteq B$. Hence $BXB \subseteq B$.

Proposition: 3.1.4

Let X be a zero symmetric BCI algebra. If B is a Bi – ideal of X, then Bx and x'B are Bi – ideals of X where x, x' \in X and x' is distributive element in X.

Proof:

Clearly, Bx is a subalgebra of X and Bx X Bx \subseteq B X Bx \subseteq Bx, We get, Bx is a Bi – ideal of X. Again x'B is a subalgebra of X. Since x' is distributive in X and x'B X x'B \subseteq x'BXB \subseteq x'B. Thus, x'B is a Bi – ideal of X.

4. QUASI – IDEALS ON BCI ALGEBRA

DEFINITION 4.1:

A subalgebra Q of a BCI algebra X is called a **Quasi** – **ideal** of X if $QX \cap XQ \cap X^*Q \subseteq Q$. In case of zero symmetric, $QX \cap XQ \subseteq Q$.

htytp: // <u>www.ijesrt.com</u>© *International Journal of Engineering Sciences & Research Technology* [43]

© 0

EXAMPLE 3.2:

Let $X = \{0, 1, a, b, c\}$ be a BCI algebra with the following cayley table:

*	0	1	а	b	с
0	0	0	а	b	с
1	1	0	а	b	с
a	а	а	0	с	b
b	b	b	с	0	а
c	с	с	b	а	0

Clearly, $Q = \{0, X.$

a, b, c} is a Quasi – ideal of a BCI algebra

4.1 MAIN RESULTS ON QUASI - IDEALS

Proposition: 4.1.1

The set of all Quasi – ideals of a BCI algebra X forms a Moore system on X.

Proof:

Let $Q_i \{ i \in I \}$ be a set of Quasi – ideals of X. Let $Q = {}_{i \in I}^{\cap} Q_i$. Then $QX \cap XQ \cap X * Q \subseteq Q_iX \cap XQ_i \cap X * Q_i \subseteq Q_i$, for every $i \in I$. Hence $QX \cap XQ \cap X * Q \subseteq Q$. Therefore, Q is a Quasi – ideal of X.

Proposition: 4.1.2

If Q is a Quasi – ideal of a BCI algebra X and S is a BCI sub algebra of X, then $Q \cap S$ is a Quasi – ideal of S.

Proof:

Since Q is a Quasi – ideal of X, $QX \cap XQ \cap X^*Q \subseteq Q$. Clearly, $Q \cap S$ is a subalgebra of S. Let $T = Q \cap S$. (i.e.) To prove: T is a Quasi – ideal of S. Then $TS \cap ST \cap S * T = (Q \cap S) S \cap S (Q \cap S) \cap S * (Q \cap S)$ $\subseteq (Q \cap S) S \cap S (Q \cap S) \subseteq SS \subseteq S$

and

$$TS \cap ST \cap S * T = (Q \cap S) S \cap S (Q \cap S) \cap S * (Q \cap S)$$
$$\subseteq QX \cap XQ \cap X * Q \subseteq Q$$

Therefore, $TS \cap ST \cap S * T \subseteq Q \cap S = T \Rightarrow TS \cap ST \cap S * T \subseteq T$. Hence T is a Quasi – ideal of S.

Proposition: 4.1.3

 $\label{eq:constraint} \begin{array}{l} \mbox{Let }X \mbox{ be a zero symmetric BCI algebra. A subalgebra }Q \mbox{ of }X \mbox{ is a } \\ \mbox{Quasi-ideal of }X \mbox{ if and only if }QX \cap XQ \subseteq Q. \end{array}$

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

[44]

Proof:

Let Q be a Quasi – ideal of X, then $QX \cap XQ \cap X^*Q \subseteq Q$. Since X is zero symmetric, $XQ \subseteq X * Q$, we get Now, $QX \cap XQ = (QX \cap XQ) \cap (QX \cap XQ)$ $= QX \cap (XQ \cap QX) \cap XQ$ $\subseteq QX \cap XQ \cap X^*Q \subseteq Q$.

Conversely,

Assume $QX \cap XQ \subseteq Q$. Consider, $QX \cap XQ \cap X^*Q \subseteq QX \cap XQ \subseteq Q$. Hence Q is a Quasi – ideal of X.

5. RELATIONSHIP BETWEEN BI – IDEALS AND QUASI – IDEALS

Proposition: 5.1

Every Quasi – ideal of a BCI algebra X is a Bi – ideal. But the Converse is not true.

Proof:

*	0	1	а	b	с
0	0	0	а	b	с
1	1	0	а	b	с
а	а	а	0	с	b
b	b	b	с	0	а
с	с	с	b	а	0

Let $X = \{0, 1, a, b, c\}$ be a BCI algebra with the following cayley table:

It is easy to prove (X, *, 0) is a BCI algebra. Clearly, $B = \{0, a\}$ is a Bi – ideal. But $Q = \{0, a\}$ is not a Quasi – ideal.

6. BI – IDEALS WHICH ARE ALSO QUASI – IDEALS

Proposition: 6.1

Let B be a Bi – ideal of a BCI algebra X. If B is itself a regular BCI algebra, then any Bi – ideal of B is a Bi – ideal of X.

Proof:

Let A be a Bi – ideal of B. Since B is regular, for every $a \in A \subseteq B$, a = aba, for some $b \in B$ and so $A \subseteq AB \cap BA$. Hence AXA \subseteq (AB) X (BA) \subseteq A (BXB) $A \subseteq$ ABA \subseteq A. Thus, A is a Bi – ideal of B.

htytp: // www.ijesrt.com@ International Journal of Engineering Sciences & Research Technology

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

Proposition: 6.2

Let B be a Bi – ideal of a BCI algebra X. If elements of B are regular, then B is a Quasi – ideal of X.

Proof:

Let $c \in BX \cap XB$. Then c = ba = a'b', for some b, b' $\in B$ and a, a' $\in X$. Since B is regular, b = bgb, for some $g \in B$. Then $c = ba = (bgb) a = (bg) (ba) = (bg) (a'b') \in BXB \subseteq B$. (i.e.) XB \cap BX is a Quasi – ideal of X.

Corollary: 1 If B is a Bi – ideal and a regular BCI subalgebra of X, then any Bi – ideal of B is a Quasi – ideal of X as well as of B. If Q is a Quasi – ideal of X which is itself regular, then any Quasi – ideal of Q is also a Quasi – ideal of X.

Proof:

First to prove that any Bi – ideal of B is a Quasi – ideal of X as well as of B. Given that B is a Bi – ideal and a regular BCI subalgebra. Then BXB \subseteq B. Let A be any Bi – ideal of B. Then ABA \subseteq A. Since B is regular, for every $a \in A \subseteq B$, a = aba, for some $b \in B$ and so $A \subseteq AB \cap BA$. Consider, $AB \cap BA \subseteq A (B \cap B) A \subseteq ABA \subseteq A$. $\Rightarrow A$ is a Quasi – ideal of B. Similarly, $AX \cap XA \subseteq (AB) X \cap X (BA) \subseteq A (BX \cap XB) A \subseteq ABA \subseteq A$. $\Rightarrow A$ is a Quasi – ideal of X.

Next to prove that any Quasi – ideal of Q is also a Quasi – ideal of X. Given that Q is a Quasi – ideal of X and regular. Since Q is a Quasi – ideal of X, $QX \cap XQ \subseteq Q$. Let P be a Quasi – ideal of Q. Also, Q is regular, for every $q \in P \subseteq Q$, q = qrq, for some $r \in Q$. Now, $PX \cap XP \subseteq (PQ) X \cap X (QP) \subseteq P (QX \cap XQ) P \subseteq PQP \subseteq P$. Thus, P is a Quasi – ideal of Q.

Corollary: 2 A subalgebra M of a regular BCI algebra X is a Quasi – ideal if and only if M is a Bi – ideal of X.

Proof:

Assume M is a Quasi – ideal of X. Then $MX \cap XM \cap X * M \subseteq M$. Consider, $(MXM) \cap (MX) * M = M (X \cap X) M \cap (MX) * M \subseteq MX \cap XM \cap X * M \subseteq M$. $\Rightarrow (MXM) \cap (MX) * M \subseteq M$. Hence M is a Bi – ideal of X. Conversely, Assume M is a Bi – ideal of X. Then $(MXM) \cap (MX) * M \subseteq M$. Consider, $MX \cap XM \cap X * M \subseteq (MXM) \cap X * M \subseteq (MXM) \cap (MX) * M \subseteq M$ $\Rightarrow MX \cap XM \cap X * M \subseteq M$. Hence M is a Quasi – ideal of X.

Corollary: 3 A subalgebra M of a regular BCI algebra A is a Quasi – ideal of

htytp: // <u>www.ijesrt.com</u>© *International Journal of Engineering Sciences & Research Technology* [46]

[Lakshmi *et al.*, 11(1): January, 2022] ICTM Value: 3.00 A if and only if M satisfies the condition MAM \subseteq M.

Proof:

Assume M is a Quasi – ideal of A. Then MA \cap AM \subseteq M. Consider, MAM = M (A \cap A) M \subseteq MA \cap AM \subseteq M. \Rightarrow MAM \subseteq M. Conversely, Assume MAM \subseteq M. Consider, MA \cap AM \subseteq M (A \cap A) M \subseteq MAM \subseteq M. \Rightarrow MA \cap AM \subseteq M. Hence M is a Quasi – ideal of A.

THEOREM: 1

Let X be a regular BCI algebra in which idempotent commute. Then every Quasi – ideal of X is idempotent.

Proof:

Let P be a Quasi – ideal of X and $a \in P$. Since P is a BCI subalgebra, $P^2 \subseteq P$. We have to prove $P \subseteq P^2$. (i.e.) $a \in P^2$. Since X is regular, a = axa, for every $x \in X$. Here, xa is an idempotent and xa is in centre of X. By [7] Theorem 1, using $MX^2M \subseteq MX \cap XM \subseteq M$, we get $PX^2P \subseteq PX \cap X P \subseteq P$ $\Rightarrow a = (ax) a (xa) = (ax) (xa) a = (ax^2a) a \in (PX^2P) P \subseteq P^2 \Rightarrow a \in P^2$. Hence $P = P^2$. Therefore P is idempotent.

Proposition: 6.3

Let X be a regular BCI algebra in which every Quasi – ideal of X is idempotent. Then for left X – subalgebra L and right X – subalgebra R of X, RL = R \cap L \subseteq LR is true.

Proof:

Let A and B be two Quasi – ideals of X, then $A \cap B$ is also a Quasi – ideal of X. Since X is idempotent, $A \cap B$ is also idempotent. Then $A \cap B = (A \cap B)^2 \subseteq AB \cap BA$. On the other hand, $AB \cap BA \subseteq AX \cap XA \subseteq A$ and analogously, $AB \cap BA \subseteq B$ $\Rightarrow A \cap B = AB \cap BA$. Since X – subalgebras are always Quasi – ideals, we have $R \cap L = RL \cap LR$, but $RL \subseteq R \cap L$ and so $RL = R \cap L \subseteq LR$ holds.

Preposition: 6.4

Let L and R be left X – subalgebra and right X – subalgebra of a BCI algebra X. Then any subalgebra B of X such that $RL \subseteq B \subseteq R \cap L$ is a Bi – ideal of X.

htytp: // <u>www.ijesrt.com</u>© *International Journal of Engineering Sciences & Research Technology* [47]

Proof:

For a subalgebra B of X with $RL \subseteq B \subseteq R \cap L$, we have BXB $\subseteq (R \cap L) X (R \cap L) \subseteq RXL \subseteq RL \subseteq B \Rightarrow BXB \subseteq B$. Thus, B is a Bi – ideal of X.

7. ACKNOWLEDGEMENT

The authors wish to thank referees for their valuable suggestions.

8. REFERENCES

- [1]. Y. B. Jun, "Some results on ideals of BCK algebras", Scientiae Mathematicae Japonicae Online, Vol.4 (2001), 411 414.
- [2]. T. Tamizh Chelvam and N.Ganesan, "On bi ideals of near rings", Indian J. Pure and Appl.Math., 18 (11) (1987) 1002 – 1005.
- [3]. I.Yakabe, "Quasi ideals in near rings", Math Rep. Kyuchu Univ 14(1983), 41 46.
- [4]. R. A. Good and D. R. Hughes, Bull, Am. Math. Soc. 58 (1952), 624 25 Abstract 575.
- [5]. S. Lajos and F. Szasz, Acta. Sci. Math. 32(1971), 185 93.
- [6]. O. Steinfeld, "Some characterizations of groups and division rings", Math, Japon. 21 (1976), 333 336.
- [7]. Murty, C. V.L.N., "Generalized near fields", Proc, Edin, Math, Soc, 27 (1984), 21 – 24.
- [8]. Stewart, P. N. "Quasi ideals in rings", Acta, Math, Acad, Scten, Hungaricae 38 (1 - 4) (1981) 231 – 235.
- [9]. K.Iseki and S. Tanaka, "Ideal theory of BCK algebras", Math. Japonica 21 (1976), 351 – 366.
- [10]. T. Sakuragi, "On fuzzy Quasi ideals and their radicals in a commutative BCK algebras", Math, Japonica, 46 (3) (1997), 485 490.
- [11]. T. Tamizh Chelvam and N. Ganesan, "On minimal bi-ideals of near-rings", Journal of the Indian Math. Soc. 53 (1988) 161-166.

ISSN: 2277-9655

CODEN: IJESS7

Impact Factor: 5.164